domingo, 8 de marzo de 2009

Motores Electricos

Grupo de 6 Semestre de TEI en una maqueta con el proyecto de iluminación, y subestación de distribución electrico.

Grupo de 5 Semestre de TEI en prácticas de osciloscopio y generador de señales en el laboratorio eléctrico de la preparatoria 10.

Que es un motor…………………………………………………………………… 4

Electricidad………………………………………………………………………… 4

Motores y generadores eléctricos……………………………………………… 5

Principio del funcionamiento…………………………………………………… 5

Rectificación de la tensión en corriente alterna …………………………… 7

Motores de corriente Alterna…………………………………………………… 8

Motor asíncrono…………………………………………………………………… 9

Operación básica del motor de CA…………………………………………… 11

Polaridad…………………………………………………………………………… 12

Corriente continúa………………………………………………………………… 14

Motor de corriente continúa………………………………………………………15

Motor serie…………………………………………………………………………...16

Comparación de las características de los motores de CA y CD………….17

Un motor sin escobillas……………………………………………………………22

Inspección general de los motores……………………………………………...27

Conclusiones

Biografía










MOTOR

Motor, máquina que convierte energía en movimiento o trabajo mecánico. La energía se suministra en forma de combustible químico, como gasóleo o gasolina, vapor de agua o electricidad, y el trabajo mecánico que proporciona suele ser el movimiento rotatorio de un árbol o eje. Los motores se clasifican según el tipo de energía que utilizan, como motores de aire comprimido o de gasolina; según el tipo de movimiento de sus piezas principales, como alternativos o rotatorios; según dónde tiene lugar la transformación de energía química a calor se llaman de combustión interna o externa; según el método utilizado para enfriar el motor se clasifican en refrigerados por agua o por aire; según la posición de sus cilindros, alineados o en V; según las fases por las que pasa el pistón para completar un ciclo, como de dos tiempos o de cuatro, y según el tipo de ciclo, como tipo Otto (el de los motores de gasolina) o diesel. Ciertos motores transforman energía eléctrica en energía mecánica (véase Motores y generadores eléctricos). Otros motores especializados son el molino, la turbina de combustión, la turbina de vapor y los utilizados en los cohetes y aviones a reacción.





ELECTRICIDAD

Electricidad, categoría de fenómenos físicos originados por la existencia de cargas eléctricas y por la interacción de las mismas. Cuando una carga eléctrica se encuentra estacionaria, o estática, produce fuerzas eléctricas sobre las otras cargas situadas en su misma región del espacio; cuando está en movimiento, produce además efectos magnéticos. Los efectos eléctricos y magnéticos dependen de la posición y movimiento relativos de las partículas con carga. En lo que respecta a los efectos eléctricos, estas partículas pueden ser neutras, positivas o negativas (véase Átomo). La electricidad se ocupa de las partículas cargadas positivamente, como los protones, que se repelen mutuamente, y de las partículas cargadas negativamente, como los electrones, que también se repelen mutuamente. En cambio, las partículas negativas y positivas se atraen entre sí. Este comportamiento puede resumirse diciendo que las cargas del mismo signo se repelen y las cargas de distinto signo se atraen.
















MOTORES Y GENERADORES ELECTRICOS
Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina que convierte la energía mecánica en eléctrica se le denomina generador, alternador o dinamo, y a una máquina que convierte la energía eléctrica en mecánica se le denomina motor.
Dos principios físicos relacionados entre sí sirven de base al funcionamiento de los generadores y de los motores. El primero es el principio de la inducción descubierto por el científico e inventor británico Michael Faraday en 1831. Si un conductor se mueve a través de un campo magnético, o si está situado en las proximidades de otro conductor por el que circula una corriente de intensidad variable, se establece o se induce una corriente eléctrica en el primer conductor. El principio opuesto a éste fue observado en 1820 por el físico francés André Marie Ampère. Si una corriente pasa a través de un conductor situado en el interior de un campo magnético, éste ejerce una fuerza mecánica sobre el conductor. Véase Magnetismo.
La máquina dinamoeléctrica más sencilla es la dinamo de disco desarrollada por Faraday, que consiste en un disco de cobre que se monta de tal forma que la parte del disco que se encuentra entre el centro y el borde quede situada entre los polos de un imán de herradura. Cuando el disco gira, se induce una corriente entre el centro del disco y su borde debido a la acción del campo del imán. El disco puede fabricarse para funcionar como un motor mediante la aplicación de un voltaje entre el borde y el centro del disco, lo que hace que el disco gire gracias a la fuerza producida por el campo magnético.
El campo magnético de un imán permanente sólo tiene fuerza suficiente como para hacer funcionar una dinamo pequeña o motor. Por ello, los electroimanes se emplean en máquinas grandes. Tanto los motores como los generadores tienen dos unidades básicas: el inductor, que crea el campo magnético y que suele ser un electroimán, y la armadura o inducido, que es la estructura que sostiene los conductores que cortan el campo magnético y transporta la corriente inducida en un generador, o la corriente de excitación en el caso del motor. La armadura es por lo general un núcleo de hierro dulce laminado, alrededor del cual se enrollan los cables conductores






Principio de funcionamiento
Según la segunda Ley de Lorentz, un conductor por el que pasa una corriente eléctrica que causa un campo magnético a su alrededor tiende a ser expulsado si se le quiere introducir dentro de otro campo magnético.

F: Fuerza en Newtons
I: Intensidad que recorre el conductor en Amperios
l: Longitud del conductor en metros
B: Inducción en Teslas
Fuerza contraelectromotriz inducida en un motor
Es la tensión que se crea en los conductores de un motor como consecuencia del corte de las líneas de fuerza, es el efecto generador
La polaridad de la tensión en los generadores es inversa a la aplicada en bornes del motor.
Las fuertes puntas de corriente de un motor en el arranque son debidas a que con máquina parada no hay fuerza contraelectromotriz y el bobinado se comporta como una resistencia pura.
Número de escobillas
Las escobillas deben poner en cortocircuito todas las bobinas situadas en la zona neutra. Si la máquina tiene dos polos, tenemos también dos zonas neutras En consecuencia, el número total de escobillas ha de ser igual al número de polos de la máquina.
En cuanto a su posición, será coincidente con las líneas neutras de los polos.

Sentido de giro
El sentido de giro de un motor de corriente continua depende del sentido relativo de las corrientes circulantes por los devanados inductor e inducido.
La inversión del sentido de giro del motor de corriente continua se consigue invirtiendo el sentido del campo magnético o de la corriente del inducido.
Si se permuta la polaridad en ambos bobinados, el eje del motor gira en el mismo sentido.
Los cambios de polaridad de los bobinados, tanto en el inductor como en el inducido se realizarán en la caja de bornas de la máquina.

Reversibilidad
Los motores y los generadores de corriente continua están constituidos esencialmente por los mismos elementos, diferenciándose Conversión de corriente alterna
















Rectificación de la tensión en corriente alterna
Este proceso, denominado rectificación, se realiza mediante dispositivos llamados rectificadores, basados en el empleo de tubos de vacío y actualmente, de forma casi general, mediante diodos semiconductores o tiristores.
"







MOTORES DE CORRIENTE ALTERNA

Se denomina motor de corriente alterna a aquellos motores eléctricos que funcionan con corriente alterna. Un motor es una máquina motriz, esto es, un aparato que convierte una forma cualquiera de energía en energía mecánica de rotación o par. Un motor eléctrico convierte la electricidad en fuerzas de giro por medio de la acción mutua
de los campos magnéticos

Se diseñan dos tipos básicos de motores para funcionar con corriente alterna polifásica: los motores asíncronos y los motores de inducción. El motor asíncrono es en esencia un alternador trifásico que funciona a la inversa. Los imanes del campo se montan sobre un rotor y se excitan mediante corriente continua, y las bobinas de la armadura están divididas en tres partes y alimentadas con corriente alterna trifásica. La variación de las tres ondas de corriente en la armadura provoca una reacción magnética variable con los polos de los imanes del campo, y hace que el campo gire a una velocidad constante, que se determina por la frecuencia de la corriente en la línea de potencia de corriente alterna.
La velocidad constante de un motor asíncrono es ventajosa en ciertos aparatos. Sin embargo, no puede utilizarse este tipo de motores en aplicaciones en las que la carga mecánica sobre el motor llega a ser muy grande, ya que si el motor reduce su velocidad cuando está bajo carga puede quedar fuera de fase con la frecuencia de la corriente y llegar a pararse. Los motores asíncronos pueden funcionar con una fuente de potencia monofásica mediante la inclusión de los elementos de circuito adecuados para conseguir un campo magnético rotatorio.
El más simple de todos los tipos de motores eléctricos es el motor de inducción de caja de ardilla que se usa con alimentación trifásica. La armadura de este tipo de motor consiste en tres bobinas fijas y es similar a la del motor asíncrono. El elemento rotatorio consiste en un núcleo, en el que se incluye una serie de conductores de gran capacidad colocados en círculo alrededor del árbol y paralelos a él. Cuando no tienen núcleo, los conductores del rotor se parecen en su forma a las jaulas cilíndricas que se usaban para las ardillas. El flujo de la corriente trifásica dentro de las bobinas de la armadura fija genera un campo magnético rotatorio, y éste induce una corriente en los conductores de la jaula. La reacción magnética entre el campo rotatorio y los conductores del rotor que transportan la corriente hace que éste gire. Si el rotor da vueltas exactamente a la misma velocidad que el campo magnético, no habrá en él corrientes inducidas, y, por tanto, el rotor no debería girar a una velocidad asíncrona. En funcionamiento, la velocidad de rotación del rotor y la del campo difieren entre sí de un 2 a un 5%. Esta diferencia de velocidad se conoce como caída.
Los motores con rotores del tipo jaula de ardilla se pueden usar con corriente alterna monofásica utilizando varios dispositivos de inductancia y capacitan Cía., que alteren las características del voltaje monofásico y lo hagan parecido al bifásico. Estos motores se denominan motores multifásicos o motores de condensador (o de capacidad), según los dispositivos que usen. Los motores de jaula de ardilla monofásicos no tienen un par de arranque grande, y se utilizan motores de repulsión-inducción para las aplicaciones en las que se requiere el par. Este tipo de motores pueden ser multifásicos o de condensador, pero disponen de un interruptor manual o automático que permite que fluya la corriente entre las escobillas del conmutador cuando se arranca el motor, y los circuitos cortos de todos los segmentos del conmutador, después de que el motor alcance una velocidad crítica. Los motores de repulsión-inducción se denominan así debido a que su par de arranque depende de la repulsión entre el rotor y el estator, y su par, mientras está en funcionamiento, depende de la inducción. Los motores de baterías en serie con conmutadores, que funcionan tanto con corriente continua como con corriente alterna, se denominan motores universales. Éstos se fabrican en tamaños pequeños y se utilizan en aparatos domésticos.


Motores de corriente alterna
En algunos casos, tales como barcos, donde la fuente principal de energía es de corriente continua, o donde se desea un gran margen de variación de velocidad, pueden emplearse motores de c-c. Sin embargo, La mayoría de los motores modernos trabajan con fuentes de corriente alterna. A pesar de que hay una gran variedad de motores de c-a, solamente se discutirán aquí tres tipos básicos: el universal, el síncrono y el de jaula de ardilla.

Motores universales
El motor de c.c. serie, tal como se ha explicado, gira cuando se aplica c.c o c.a de baja frecuencia. Tal motor, llamado universal, se utiliza en ventiladores, sopladores, batidoras, taladradoras eléctricas transportables y otras aplicaciones donde se requiere gran velocidad con cargas débiles o pequeña velocidad con un par muy potente.


Motor asíncrono







Esquema de un motor asíncrono.
Los motores asíncronos son un tipo de motor eléctrico de corriente alterna. Su velocidad de giro es constante y viene determinada por la frecuencia de la tensión de la red a la que esté conectado y por el número de pares de polos del motor, siendo conocida esa velocidad como "velocidad de sincronismo".
Se puede utilizar un alternador como motor en determinadas circunstancias. Si se excita el campo con c-c y se alimenta por los anillos colectores a la bobina del rotor con c-a, la máquina no arrancará. El campo alrededor de la bobina del rotor es alterno en polaridad magnética pero durante un semiperiodo del ciclo completo, intentará moverse en una dirección y durante el siguiente semiperiodo en la dirección opuesta. El resultado es que la máquina permanece parada. La máquina solamente se calentará y posiblemente se quemará.
El rotor de un alternador de dos polos debe hacer una vuelta completa para producir un ciclo de c-a. Debe girar 60 veces por segundo, o 3.600 revoluciones por minuto (rpm), para producir una c-a de 60 Hz. Si se puede girar a 3.600 rpm tal alternador por medio de algún aparato mecánico, como por ejemplo, un motor de c-c, y luego se excita el inducido con una c-a de 60 Hz, continuará girando como un motor asíncrono.
Su velocidad de sincronismo es 3.600 rpm. Si funciona con una c-a de 50 Hz, su velocidad de sincronismo será de 3.000 rpm. Mientras la carga no sea demasiado pesada, un motor asíncrono gira a su velocidad de sincronismo y solo a esta velocidad. Si la carga llega a ser demasiado grande, el motor va disminuyendo velocidad, pierde su sincronismo y se para. Los motores asíncronos de este tipo requieren todos una excitación de c-c para el campo (o rotor), así como una excitación de c-a para el rotor (o campo).
Se puede fabricar un motor asíncrono construyendo el rotor cilíndrico normal de un motor tipo jaula de ardilla con dos lados planos. Un ejemplo de motor asíncrono es el reloj eléctrico, que debe arrancarse a mano cuando se para. En cuanto se mantiene la c-a en su frecuencia correcta, el reloj marca el tiempo exacto. No es importante la precisión en la amplitud de la tensión.


Operación básica del motor de CA

Un motor de CA tiene dos partes eléctricas básicas: un "estator" y un "rotor", como se muestra en la Figura 8. El estator está en el componente eléctrico estático. Consiste en un grupo de electroimanes individuales dispuestos de una manera tal que formen un cilindro hueco, con un polo de cada cara de los imanes hacia el centro del grupo. El término, "estator" se deriva de la palabra estática. El rotor es el componente eléctrico rotativo, el cual consiste en un grupo de electroimanes dispuestos alrededor de un cilindro, con los polos haciendo frente hacia los polos del estator. El rotor, está situado obviamente dentro del estator y montado en el eje del motor. El término "rotor" se deriva de la palabra rotar. El objetivo de estos componentes del motor es hacer que el rotor gire sobre el eje del motor. Esta rotación ocurrirá debido al fenómeno magnético previamente discutido que los polos opuestos se atraen y polos iguales se rechazan. Si cambiamos progresivamente la polaridad de los polos del estator de una manera tal que su campo magnético combinado rote, entonces el rotor seguirá girando con el campo magnético del estator.

Figura 9. Rotación del campo magnético de un motor de CA.
Propulsión magnética del motor

El principio de operación de los motores se puede demostrar fácilmente usando dos electroimanes y un imán permanente. La corriente se pasa a través de la bobina No. 1 en dirección al polo Norte establecido y a través de la bobina No. 2 en dirección al polo Sur. Un imán permanente con un polo Norte y Sur es la pieza móvil de este motor simple. En la figura 5-a el polo Norte del imán permanente está enfrente del polo Norte del electroimán. De manera semejante, los polos Sur están uno enfrente del otro. Como los polos magnéticos iguales se rechazan, empieza a girar el imán permanente. Cuando la fuerza de atracción entre los polos opuestos llega a ser lo suficientemente fuerte, el imán gira permanente. El imán rotativo continúa cambiando de dirección hasta que los polos opuestos se alinean. En este punto el rotor normalmente se detendría por la atracción entre los polos diferentes (Figura 5-b).
Polaridad
Generalmente los aparatos de corriente continua no suelen incorporar protecciones frente a un eventual cambio de polaridad, lo que puede acarrear daños irreversibles en el aparato. Para evitarlo, y dado que la causa del problema es la colocación inadecuada de las baterías, es común que los aparatos incorporen un diagrama que muestre cómo deben colocarse; así mismo, los contactos se distinguen empleándose convencionalmente un muelle metálico para el polo negativo y una placa para el polo positivo. En los aparatos con baterías recargables, el transformador - rectificador tiene una salida tal que la conexión con el aparato sólo puede hacerse de una manera, impidiendo así la inversión de la polaridad.
En los casos de instalaciones de gran envergadura, tipo centrales telefónicas y otros equipos de telecomunicación, donde existe una distribución centralizada de corriente continua para toda la sala de equipos se emplean elementos de conexión y protección adecuados para evitar la conexión errónea de polaridad.
"


Figura 5. Propulsión magnética del motor


Sí la dirección de corrientes en las bobinas electromagnéticas fue invertida repentinamente, por consiguiente se invierte la polaridad de las dos bobinas, entonces, los polos otra vez sería opuestos y se repelerían entre ellos (Figura 5-c). Por lo tanto, el imán permanente continuaría rotando. Si la dirección actual en las bobinas electromagnéticas fuera cambiada todo el tiempo, el imán daría vuelta 180 grados a medio camino, entonces el imán continuaría rotando. Este dispositivo sencillo es un motor en su forma más simple. Un motor real es más complejo, sin embargo, el principio es igual.


Figura 8. Componentes eléctricos básicos de un motor de CA






Corriente continúa


Representación de la tensión en corriente continúa.
La corriente continua (CC en español, en inglés DC, de Direct Current) es el flujo continuo de electrones a través de un conductor entre dos puntos de distinto potencial. A diferencia de la corriente alterna (CA en español, AC en inglés), en la corriente continua las cargas eléctricas circulan siempre en la misma dirección desde el punto de mayor potencial al de menor. Aunque comúnmente se identifica la corriente continúa con la corriente constante (por ejemplo la suministrada por una batería), es continua toda corriente que mantenga siempre la misma polaridad.

Usos
Su descubrimiento se remonta a la invención de la primera pila por parte del científico italiano Conde Alejandro Volta. No fue hasta los trabajos de Thomas Alba Edison sobre la generación de electricidad en las postrimerías del siglo XIX, cuando la corriente continua comenzó a emplearse para la transmisión de la energía eléctrica. Ya en el siglo XX este uso decayó en favor de la corriente alterna (propuesta por el inventor serbo-estadounidense Nigola Tesla, sobre cuyos desarrollos se construyó la primera central hidroeléctrica en las Cataratas del Niágara) por sus menores pérdidas en la transmisión a largas distancias, si bien se conserva en la conexión de redes eléctricas de diferente frecuencia y en la transmisión a través de cables submarinos.
La corriente continua es empleada en infinidad de aplicaciones y aparatos de pequeño voltaje alimentados con baterías (generalmente recargables) que suministran directamente corriente continua, o bien con corriente alterna como es el caso, por ejemplo, de los ordenadores, siendo entonces necesario previamente realizar la conversión de la corriente alterna de alimentación en corriente continua.
También se está extendiendo el uso de generadores de corriente continua mediante células solares, dado el nulo impacto medioambiental del uso de la energía solar frente a las soluciones convencionales (combustible fósil y energía nuclear).










MOTORES DE CORRIENTE COMTINUA

En general, los motores de corriente continua son similares en su construcción a los generadores. De hecho podrían describirse como generadores que funcionan al revés. Cuando la corriente pasa a través de la armadura de un motor de corriente continua, se genera un par de fuerzas debido a la acción del campo magnético, y la armadura gira (véase Momento de una fuerza). La función del conmutador y la de las conexiones de las bobinas del campo de los motores es exactamente la misma que en los generadores. La revolución de la armadura induce un voltaje en las bobinas de ésta. Este voltaje es opuesto al voltaje exterior que se aplica a la armadura, y de ahí que se conozca como voltaje inducido o fuerza contraelectromotriz. Cuando el motor gira más rápido, el voltaje inducido aumenta hasta que es casi igual al aplicado. La corriente entonces es pequeña, y la velocidad del motor permanecerá constante siempre que el motor no esté bajo carga y tenga que realizar otro trabajo mecánico que no sea el requerido para mover la armadura. Bajo carga, la armadura gira más lentamente, reduciendo el voltaje inducido y permitiendo que fluya una corriente mayor en la armadura.
Debido a que la velocidad de rotación controla el flujo de la corriente en la armadura, deben usarse aparatos especiales para arrancar los motores de corriente continua. Cuando la armadura está parada, ésta no tiene realmente resistencia, y si se aplica el voltaje de funcionamiento normal, se producirá una gran corriente, que podría dañar el conmutador y las bobinas de la armadura. El medio normal de prevenir estos daños es el uso de una resistencia de encendido conectada en serie a la armadura, para disminuir la corriente antes de que el motor consiga desarrollar el voltaje inducido adecuado. Cuando el motor acelera, la resistencia se reduce gradualmente, tanto de forma manual como automática.
La velocidad a la que funciona un motor depende de la intensidad del campo magnético que actúa sobre la armadura, así como de la corriente de ésta. Cuanto más fuerte es el campo, más bajo es el grado de rotación necesario para generar un voltaje inducido lo bastante grande como para contrarrestar el voltaje aplicado. Por esta razón, la velocidad de los motores de corriente continua puede controlarse mediante la variación de la corriente del campo.
Una máquina de corriente continua (generador o motor) se compone principalmente de dos partes, un estator que da soporte mecánico al aparato y tiene un hueco en el centro generalmente de forma cilíndrica. En el estator además se encuentran los polos, los cuales pueden estar devanados sobre la periferia del estator, o pueden estar de forma saliente. El rotor es generalmente de forma cilíndrica, también devanado





Motor serie
Un motor serie es un tipo de motor eléctrico de corriente continua en el cual el devanado de campo (campo magnético principal) se conecta en serie con la armadura. Este devanado está hecho con un alambre grueso porque tendrá que soportar la corriente total de la armadura.
Debido a esto se produce un flujo magnético proporcional a la corriente de armadura (carga del motor). Cuando el motor tiene mucha carga, el campo de serie produce un campo magnético mucho mayor, lo cual permite un esfuerzo de torsión mucho mayor. Sin embargo, la velocidad de giro varía dependiendo del tipo de carga que se tenga (sin carga o con carga completa). Estos motores desarrollan un par de arranque muy elevado y pueden acelerar cargas pesadas
Un motor compound (o motor de excitación compuesta) es un motor de corriente continua cuya excitación es originada por dos bobinados inductores independientes; uno dispuesto en serie con el bobinado inducido y otro conectado en derivación con el circuito formado por los bobinados inducido, inductor serie e inductor auxiliar.
Los motores compuestos tienen un campo serie sobre el tope del bobinado del campo shunt. Este campo serie, el cual consiste de pocas vueltas de un alambre grueso, es conectado en serie con la armadura y lleva la corriente de armadura.
El flujo del campo serie varia directamente a medida que la corriente de armadura varía, y es directamente proporcional a la carga. El campo serie se conecta de manera tal que su flujo se añade al flujo del campo principal shunt. Los motores compound se conectan normalmente de esta manera y se denominan como compound acumulativo.
Esto provee una característica de velocidad que no es tan “dura” o plana como la del motor shunt, ni tan “suave” como la de un motor serie. Un motor compound tiene un limitado rango de debilitamiento de campo; la debilitación del campo puede resultar en exceder la máxima velocidad segura del motor sin carga. Los motores de corriente continua compound son algunas veces utilizados donde se requiera una respuesta estable de par constante para un rango de velocidades amplio.
El motor shunt o motor de excitación paralelo es un motor de corriente continua cuyo bobinado inductor principal está conectado en derivación con el circuito formado por los bobinados inducido e inductor auxiliar.
Al igual que en las dinamos shunt, las bobinas principales están constituidas por muchas espiras y con hilo de poca sección, por lo que la resistencia del bobinado inductor principal es muy grande



Comparación de las características de los motores de CA y CD



Como los motores de CA continúan siendo usados en aplicaciones que tradicionalmente se emplean los motores de CD, es apropiado mencionar algunas de las características que presentan estos motores, tales como: construcción típica, fuerza de torsión, circuitos equivalentes, rangos de carga y velocidad, etc.

Esta comparación también resaltará algunas de las ventajas y desventajas de cada tipo de motor en aplicaciones con velocidad variable. Además, se podrá observar que los motores de CD se han venido sustituyendo por motores de CA en aplicaciones donde se requiere trabajos con velocidad variable, por lo que es necesario comprender los motores de CA, de tal manera que podamos optimizarlos en este tipo de aplicaciones.




Introducción

En esta sesión se presentan comparaciones específicas de las características individuales de los motores de CA y CD, basadas en el tipo de tecnología (leyes físicas) en comparación con las históricas (estandarización, aplicaciones, etc.). La base de comparación será un motor de CD, 4 polos con campos excitados individualmente, contra un motor de inducción CA, 4 polos, 3 fases y tipo jaula de ardilla.

Construcción

Rápidamente miremos algunas de las construcciones básicas de los motores de la CA y CD. Usted verá, que algunas generalidades pueden aplicarse con respecto a diferencias en la construcción, sin embargo hay muchas excepciones, mientras que muchos de los motores de CA utilizan un marco del hierro fundido, con bases de montaje integradas al marco (Figura 15), también existen motores de CA con bases de sujeción montadas en la carcaza (Figura 16









Figura 15. Motor de CA con base integrada al marco del hierro fundido

Figura 16. Motor de CA con bases de sujeción integradas a la carcaza


De la misma manera, mientras que muchos motores de la CD tienen las bases de montaje como parte de la carcaza (Figura 17), otros utilizan bases integradas al marco del motor (Figura 18).


Figura 17. Motor de CD con bases integradas a la carcaza

Figura 18. Motor de CD con bases integradas al marco


Con la proliferación de las fuentes de energía estáticas para controlar motores de CD, la construcción del marco laminado (Figura 19) llegó a ser popular. Los motores de CA utilizan fuentes electrónicas de energía, por lo que la construcción del marco laminado (Figura 20) es considerado para el creciente uso de motores de CA (especialmente para usos con variadores de velocidad).







Figura 19. Motor de CD que utiliza un marco laminado

Figura 20. Motor de CD que utiliza un marco laminado


Cada uno de los términos indicados en la sección de motores eléctricos se referirán a piezas o partes de los motores indicados en las Figuras 21-24.


Figura 21. Componentes del Motor de CA

Figura 22. Componentes del Motor de CA




Figura 23. Componentes del Motor de CD

Figura 24. Componentes del Motor de CD








Rotor de motor eléctrico



Motores de jaula de ardilla
La mayor parte de los motores que funcionan con c-a de una sola fase tienen el rotor de tipo jaula de ardilla. Los rotores de jaula de ardilla reales son mucho más compactos y tienen un núcleo de hierro laminado.
Los conductores longitudinales de la jaula de ardilla son de cobre y van soldados a las piezas terminales de metal. Cada conductor forma una espira con el conductor opuesto conectado por las dos piezas circulares de los extremos. Cuando este rotor está entre dos polos de campos electromagnéticos que han sido magnetizados por una corriente alterna, se induce una Fem. en las espiras de la jaula de ardilla, una corriente muy grande las recorre y se produce un fuerte campo que contrarresta al que ha producido la corriente (ley de Lenz). Aunque el rotor pueda contrarrestar el campo de los polos estacionarios, no hay razón para que se mueva en una dirección u otra y así permanece parado. Es similar al motor asíncrono el cual tampoco se arranca solo. Lo que se necesita es un campo rotatorio en lugar de un campo alterno.
Cuando el campo se produce para que tenga un efecto rotatorio, el motor se llama de tipo de jaula de ardilla. Un motor de fase partida utiliza polos de campo adicionales que están alimentados por corrientes en distinta fase, lo que permite a los dos juegos de polos tener máximos de corriente y de campos magnéticos con muy poca diferencia de tiempo. Los arrollamientos de los polos de campo de fases distintas, se deberían alimentar por c-a bifásicas y producir un campo magnético rotatorio, pero cuando se trabaja con una sola fase, la segunda se consigue normalmente conectando un condensador (o resistencia) en serie con los arrollamientos de fases distintas.
Con ello se puede desplazar la fase en más de 20° y producir un campo magnético máximo en el devanado desfasado que se adelanta sobre el campo magnético del devanado principal.
Desplazamiento real del máximo de intensidad del campo magnético desde un polo al siguiente, atrae al rotor de jaula de ardilla con sus corrientes y campos inducidos, haciéndole girar. Esto hace que el motor se arranque por sí mismo.
El devanado de fase partida puede quedar en el circuito o puede ser desconectado por medio de un conmutador centrífugo que le desconecta cuando el motor alcanza una velocidad predeterminada. Una vez que el motor arranca, funciona mejor sin el devanado de fase partida. De hecho, el rotor de un motor de inducción de fase partida siempre se desliza produciendo un pequeño porcentaje de reducción de la que sería la velocidad de sincronismo.
Si la velocidad de sincronismo fuera 1.800 rpm, el rotor de jaula de ardilla, con una cierta carga, podría girar a 1.750 rpm. Cuanto más grande sea la carga en el motor, más se desliza el rotor. En condiciones óptimas de funcionamiento un motor de fase partida con los polos en fase desconectados, puede funcionar con un rendimiento aproximado del 75 por 100.
Otro modo de producir un campo rotatorio en un motor, consiste en sombrear el campo magnético de los polos de campo. Esto se consigue haciendo una ranura en los polos de campo y colocando un anillo de cobre alrededor de una de las partes del polo.
Mientras la corriente en la bobina de campo está en la parte creciente de la alternancia, el campo magnético aumenta e induce una Fem. y una corriente en el anillo de cobre. Esto produce un campo magnético alrededor del anillo que contrarresta el magnetismo en la parte del polo donde se halla él.
En este momento se tiene un campo magnético máximo en la parte de polo no sombreada y un mínimo en la parte sombreada. En cuanto la corriente de campo alcanza un máximo, el campo magnético ya no varía y no se induce corriente en el anillo de cobre. Entonces se desarrolla un campo magnético máximo en todo el polo. Mientras la corriente está decreciendo en amplitud el campo disminuye y produce un campo máximo en la parte sombreada del polo.
De esta forma el campo magnético máximo se desplaza de la parte no sombreada a la sombreada de los polos de campo mientras avanza el ciclo de corriente. Este movimiento del máximo de campo produce en el motor el campo rotatorio necesario para que el rotor de jaula de ardilla se arranque solo. El rendimiento de los motores de polos de inducción sombreados no es alto, varía del 30 al 50 por 100. Una de las principales ventajas de todos los motores de jaula de ardilla, particularmente en aplicaciones de radio, es la falta de colector o de anillos colectores y escobillas. Esto asegura el funcionamiento libre de interferencias cuando se utilizan tales motores.


Un motor sin escobillas
Si abrimos un ventilador de PC nos encontramos con un panorama como éste:

Vemos que hay cuatro pequeños electroimanes en el estator, formados por dos bobinados independientes, y que el rotor (al que están fijadas las palas del ventilador) tiene un imán. El circuito de control tiene un pequeño chip que, en base a la señal que le llega de uno de los bobinados (el bobinado sensor o de control), conecta o desconecta el otro para hacer que el rotor gire. El esquema eléctrico es, aproximadamente, este:
Vemos las dos señales, A y B, que van desde los bobinados hasta el chip controlador. El truco para invertir el sentido de giro del motor está en conectarlas al revés. La única forma de hacerlo consiste en cortar las pistas del circuito impreso y usar dos pequeños cables para rehacer las conexiones. No intenteis desoldar los bobinados, porque lo más seguro es que os los cargueis.
Un ejemplo práctico
Veamos como lo hice yo. Este es el ventilador que compré para mi caja. Tiene cuatro leds en el frontal, cuyo efecto sólo se aprecia bien por el lado "bonito".

Tras probarlo en ambas posiciones, comprobé que mi ordenador se calentaba menos si hacía que expulsase el aire de dentro. Por desgracia, eso implicaba dejar hacia afuera el lado "feo", así que decidí invertir el sentido de giro.

Lo primero que hice fue buscar el chip de control, tarea sencilla pues es el único que tiene cuatro pines con sus correspondientes soldaduras. Dado que la carcasa era transparente y podía ver las pistas que me interesaban, decidí no desmontar el ventilador sino, simplemente, agujerear con un minitaladro en los puntos adecuados. También con el minitaladro corté las dos pistas que conectaban los bobinados con el chip de control.


A continuación, soldé dos cables a los dos pines del chip de control, y luego conecté sus extermos a los pines de las bobinas, pero invirtiendo las viejas conexiones.

Este es el resultado final: el ventilador tiene el lado "bonito" hacia afuera y, a la vez, expulsa aire.
Un detalle importante: es posible que el ventilador rectificado necesite un poco más de tensión para girar que antes. En mi caso concreto, inicialmente le bastaban cinco voltios para comenzar a funcionar, mientras que ahora necesita casi seis (con cinco necesita un pequeño empujoncito para ponerse en marcha, aunque luego ya gira sólo sin problemas).















Inspección general

Revisar el motor cada 500 horas de operación o cada 3 meses, lo que ocurra primero. Mantener el motor limpio y las aberturas para ventilación despejadas.

En cada inspección deberán efectuarse los siguientes pasos:

a) Verifique si el interior y exterior del motor se encuentran libres de suciedad, aceite, grasa, agua, etc. Puede haber acumulación de pulpa de papel, pelusas textiles, vapores aceitosos, etc., que bloquea la ventilación del motor. Si el motor no está debidamente ventilado, puede haber recalentamiento y provocar la falla prematura del motor.

b) Use periódicamente un “Megger” (megóhmetro) para asegurar que se haya mantenido la integridad del aislamiento en los devanados.

c) Revisar todos los conectores eléctricos para asegurar que estén bien apretad